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* Introduce basic turbulence concepts and solar wind observations

* Motivate and introduce gyrokinetics

* Discuss results pointing toward Landau damping and entropy cascade
* Intermittency in KAW turbulence using the GENE code

* Field-particle correlations to diagnose dissipation

e Eulerian Vlasov-Maxwell code, Gkeyll



Solar Wind Turbulence



What is turbulence?

“The most important unsolved problem of classical physics.” - Feynman

Cartoon Model of Turbulence

Turbulent energy Turbulent energy /
injected at large * cascades (nonlinearly)

scale (stirring) to ever smaller scales



Why is turbulence important?

Turbulence in important because it governs the transport of

e Energy (energy flow, heating)
e Mass (mixing, accretion)
e Momentum (jet interactions, shocks)

Turbulence plays an important role in a large variety of space and astrophysical
phenomena, e.g.,

e Accretion discs
¢ Interstellar medium
e Star-forming nebulae

e Solar corona and solar wind




Energy spectrum

Kinetic Energy E,y

Energy injected at
Driving Scale

E(k) ~v?/k o k~5/3

X k,—5/3

Energy removed at

/ Dissipation
Scale

Inertial Range

1k
7 Wavenumber



MHD turbulence

* Turbulence is no longer mediated by vortices but
interacting Alfvén waves

* [n a magnetized plasma, the large-scale
magnetic field adds a preferential direction to the
system

* Turbulence becomes anisotropic




Solar wind energy spectrum
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Wave modes
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Contemporary solar wind energy spectra
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Evidence of low frequency, oblique fluctuations
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In situ solar wind dispersion
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In situ magnetic helicity suggests KAWS

* Magnetic helicity is a measure of the twist
of the magnetic field.
17 Sep 1995 14:38 to 18 Sep 04:46, 14 2 hrs

e Fluctuating magnetic helicity is defined as 100 - N ae'E §
' o of 2/3
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e Measurements consistent with 95% power Normalized fluctuating magnetic helicity

in KAW fluctuations [Klein et al (2014)]. from Podesta & Gary (2011).



Intermittency in the solar wind
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HMHD simulations. From
Greco et al (2009)
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A current sheet observed in
the solar wind at kinetic
scales. From Perri et al
(2012)



Turbulence at kinetic scales
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* Anisotropic cascade of MHD Alfvén waves
transitions to a cascade of kinetic Alfvén
waves at the ion Larmor radius.

Kinetic iAlfven
Wave :Cascade

* Dissipation begins at ion kinetic scales in the
form wave-particle interactions (Landau,
transit-time, cyclotron, ...).

 Current sheets also form at ion scales and - S 2 0 b2 o)

may be responsible for dissipation.
* Which mechanism is dominant in weakly - 150
collisional kinetic plasmas?

-100




Turbulence at kinetic scales
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Gyrokinetic Turbulence



Gyrokinetics

What is gyrokinetics?

e Average quantities over the gyro-motion of
particles and describe the evolution of rings
rather than particles

1“‘
N Ion Position

e Gyro-averaged and ordered version of full
Vlasov-Maxwell kinetic theory

e Basic ordering parameters:
€ = pi/L ~ w/Qi ~ ]CH/kJ_ < 1

Why is it useful?

* Removes high frequency (> Qi) fluctuations and reduces the problem from 6 to 5
dimensions

* Retains non-linear physics and kinetic effects (FLR, Landau damping, collisions)



Gyrokinetic equations
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AstroGK and GENE

e Based on mature fusion gyrokinetics codes

e Eulerian initial-value codes with periodic boundary
conditions in slab geometry

* Evolves 5D phase space for each species " e AR T I T
* Fully non-linear, with number, momentum, and I %’“
energy conserving collision operators (g T SRR 5 RN o
P e |
’ | T e
* Driven at outer-scale with Langevin antenna |\ fEE o ,";
current coupled to parallel vector potential —injects R - O\eud Vg Bpca! T
Alfvén like waves at outer-scale AR N
* Real mass ratio, Bp = 1, Tp = Te, Weakly collisional Internal view of the JET tokamak
(Vs << Wmin) in the UK.

* Have been rigorously compared to experimental
results and un-ordered kinetic codes (PIC)



lon scale spectrum
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from Howes et al (2011).



Electron scale spectrum
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One dimensional magnetic energy spectra
from AstroGK averaged over three turn-
around times (black), weakened cascade
model (blue dash-dotted), and the empirical
form from Alexandrova et al (2012). From
TenBarge et al (2013).

e Electron scale simulation, &k p; € [5, 105]

e Averaged spectrum agrees well with in
situ solar wind observations

e Also reproduced by the weakened
cascade model

e Electron scale current sheets form
naturally

e Measured heating rate consistent with
enhanced Landau damping in current
sheets



Electron collisional heating [TenBarge et al (2013)]
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a) and b) time evolution of the collisional Total heating of the electrons from the simulation
heating rate (red) compared to other energy (solid black), an estimate of the electron heating
diagnostics. c) Cross correlation between based on linear wave-particle damping (dotted

heating rate and other diagnostics. blue), and the Ohmic heating rate (dashed red).



GENE simulation energy spectra [Told et al (2015)]
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Intermittency and Coherent Structures



Measuring intermittency in the simulation
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dentifying intermittency

Kurtosis provides a measure of the peakedness
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Intermittent structure identification
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Fractal scaling

14

To quantify the intermittency and get a handle on the spatial structure, we
employ a common high-order multi-scale analysis to determine the fractal na-
ture of the turbulence:

1 N
S (Ar) = Z IAB;(rj, Ar)|™ oc Ars(m),
71=1
where
AB;(r,Ar) = B;(r + Ar) — B;(r).

If the scaling exponent, ¢, satisfies ((m) = Hm, then the turbulence is monofrac-
tal, i.e., the turbulence is globally scale invariant.

5 T

Cluster solar wind
data from Kiyani et
al, PRL (2009)
depicting a multi-

1 fractal inertial range

and mono-fractal
STATsOB dissipation range. H

—=STAFF-SCBz | ~ 0.85 In the
—v—FGM Bz . . .
| dissipation range.
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Fractal scaling in the simulation
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Field-Particle Correlations



Vlasov-Poisson [Howes et al submitted]
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Vlasov-Poisson [Howes et al submitted]
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Vlasov-Poisson [Howes et al submitted]
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Viasov-Poisson
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Components of the distribution function
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and the equilibirum electron distribution function feo (black). (b) The nonlinear wave-parti-
cle interaction component of the perturbed electron distribution function at position x = 0,
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The quasilinear flattening of the distribution function at the resonant velocities v = +w/k
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Correlation with zero lag
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FIGURE 11. For Case I, plots of (a) the Ci(v,t,7) correlation quantity,
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Choosing a correlation time

LX)

3
2
1
0 b
]
2
3

"0 5 10 15 20 25 30 O 51015202530__888.
) ) =

Ml
/e ]|

o AN
é‘/gﬂ e 10 N
4 [ e e 4
= 7 O 15 :
// / \--.“"<
-8 ‘e 1 4l v=0.08v,c 1 |, v=2.85V,, 0

-4-2024

O 5 10 15 20 25 30 0 5 10 15 20 25 30

V/ Vte t(ope t(Dpe
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at vo = 2.85vte. Also, the change in the electron phase-space energy density Awe(xo,v,t) as a
function of time wp.t at the same two velocity values, (c) off-resonance at vo = 0.08v:. and (d)
on resonance at vg = 2.85v¢.. Units of the energy transfer rate (a,b) and change in phase-space
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Correlation finite time
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FIGURE 13. (a) The field-particle correlation Ci(v,t,7) = Cr(qsv* /206 fs/Ov, E) at x = 0 using
a correlation time wp.7 = 6.28. (b) The time-integrated correlation fot Ci(v,t', 7)dt’, showing a
clear resonant signature of the secular energy transfer about the resonant velocities v = +w/k
(dashed green).
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Alfvénic turbulence

We perform three initial
simulations, with the
following parameters:

o kip, € [0.3,3.3
o 5, =0.3,1.0,5.0
o T, =1,

@ v, = 0.1v(k1 )

(Klein et al. 2016, in prep
for submission to JPP)
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Landau and transit time damping

Coherent damping occurs for particles satisfying the resonance
W — kHU” = (.
The n = 0 resonance corresponds to two physical mechanisms,

Landau Damping, and Transit Time Damping
(Landau 1946, Barnes 1966)
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Correlation tests of Landau damping
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@ (] peaks near the appropriate resonant velocities.

® Landau Damping weakens for larger [3,.



Transit time damping




Comparison and ID

As the velocity derivative 81,”98 may be difficult to construct
accurately for spacecraft data, we consider the related

correlation: ,
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Comparison and ID

As the velocity derivative 0, gs may be difficult to construct
accurately for spacecraft data, we consider the related

correlation: AN
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Eulerian Vlasov-Maxwell



The Gkeyll (and Hyde) Framework

“It is one thing to mortify curiosity, another to conquer it.”

e The Gkeyll framework is flexible suite of solvers for
plasma physics being developed at the Princeton
Plasma Physics Lab and UMD

e Solvers include a finite volume method for equations
written in conservative form and a discontinuous
Galerkin finite element method for systems of equations
which can be written in terms of a Poisson bracket

e Multiple publications already:

* L. Wang, A. H. Hakim, A. Bhattacharjee, and K. Germaschewski.
Comparison of multi-fluid moment models with particle-in-cell
simulations of collisionless magnetic reconnection. Phys. Plasmas, 22
(1): 012108, (2015).

* E.L.Shi, A. H. Hakim, and G. W. Hammett. A gyrokinetic one-
dimensional scrape-off layer model of an edge-localized mode heat
pulse. Phys. Plasmas, 22 (2): 022504, (2015).

* J.Ng, Y. M. Huang, A. H. Hakim, A. Bhattacharjee, A. Stanier, W.
Daughton, L. Wang, and K. Germaschewski. The island coalescence
problem: Scaling of reconnection in extended fluid models including
higher-order moments. Phys. Plasmas, 22, 112104, (2015).



The Vlasov-Maxwell system

0 f
E‘sz'(af)zc[f]a
B L VxE=0
ot VT

OE

GOMOE —VXB=—pugd

® V,=(Vx,Vy)and a = (v, (E+v x B))

@ Standard approach to solving the Vlasov-Maxwell system numerically is the

particle-in-cell (PIC) algorithm, which approximates the plasma as a
collection of " macroparticles”

@ Each macroparticle’'s position and velocity are solved for via
X =V

s (E 4 v x B))

ms

v =




Direct discretization

@ What if we solved for the distribution function, as well as the fields, on a
grid? A completely Eulerian (or continuum) algorithm?
@ Advantages

e Resulting distribution function would be noise-free, allowing for
diagnosis of many dissipation mechanisms much more easily

e The fields would also be noise-free

o Numerically, the algorithm requires no dynamic load-balancing at
extreme scale computing, don't have to worry about tracking particles

@ Disadvantages

e All of velocity space must be solved at each configuration space point

o All of the same time step constraints as explicit PIC (speed of light and
plasma frequency)

e One additional constraint when compared to the Boris push. Requires
careful treatment of magnetic field because Larmor radii are not
automatically closed

e Production simulation distribution functions are enormous data
structures. Either must sacrifice write frequency or only write out
distribution function in small subdomain for analysis



Discontinuous Galerkin method

In the discontinuous Galerkin (DG) finite element method framework, one
selects a discontinuous approximation space (usually piecewise
polynomials). Unlike FV schemes which only evolve cell averages, in DG
we also evolve higher moments.

A Piecewise Constant Function A Pjecewise Ljnear Functlion A Pie;cewise ngadratic Funlction
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Figure: The projection of z* + sin(5x) onto piecewise constant (left), linear
(middle) and quadratic (right) spaces.



Why DG?

@ Why use this particular numerical method?
@ Advantages

o Flexible accuracy. Can pick an appropriately high order polynomial
representation to get most “bang for your buck”

e Dominant computation is matrix-vector multiplication. Easily
vectorized, and matrices can be cached if polynomial order is picked
appropriately for dimension of problem

e High arithmetic intensity. Number of computations per byte of data
communicated is large and without load balancing

e Highly parallelizable. Only requires one layer of ghost cells

0.1-1.0 flops per byte Typically < 2 flops per byte O(10) flops per byte
P N e T - '

lnton¥lty

SpMV
BLAST .2 Particle
Stencils (PDEs) Methods
FFTs. Dense
Lattice Boltzmann Spectral Methods Linear Algebra
BLAS3
“ Methods « P “ ( » P

o 1) O log(N) ) Of N )
Source: http://crd.lbl.gov/departments/computer-science/PAR/research/roofline/




Where is Gkeyll now?

e Currently in the benchmarking, debugging, and optimization phase
» Addition of a collision operator, Lenard Bernstein

e Other improvements: sparse grids, reduced basis sets, sub-cycling, semi-
implicit, etc

tQ.; =30




e Dissipation is consistent with (inhomogeneous) Landau damping

e Intermittent structures form naturally and are similar to those observed in the
solar wind

e Field-particle correlations support the Landau damping picture and are
applicable to 1D in situ spacecraft data

e Gyrokinetics is a powerful tool for studying solar wind turbulence, but we are
developing a full Eulerian Vlasov-Maxwell simulation code to move beyond
gyrokinetics.



Supplemental slides



Consequences of the GK ordering

- Cyclotron, plasma wave, and the fast magnetosonic branch are ordered
out of system

« Subsonic drifts: vy ~ evyy,

* In the absence of collisions, magnetic moment conserved
 Rigorously quasi-neutral, i.e., on. = dn.

* Must choose an ¢ to connect to reality

- Most codes do not evolve the transport time-scale, i.e., the background
does not evolve



Cascade model [Howes et al (2008)]

Ideally, one would like a turbulence model wherein the spectral exponents, spectral
anisotropy, and ion and electron heating can be simply predicted

ob; Oe 10 g
—k =k — + S — 29b; z
where S is a source term and vy is the linear 0.1
damping rate. 10-2 |

10-3 L

—92/3 =
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Wl = kJ_bka_)(k'J_) 107 =
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Energy spectra from fully nonlinear
AstroGK simulation with Bi=1 and T; /Te
= 1 (thick) compared to predictions from
the weakened cascade model (thin solid)

and the local cascade model (thin

dashed). From Howes et al (2011).
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Weakened cascade model [Howes et al (2011)]
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Antenna energy injection

* Using the energy transfer diagnostic, the non-conservative contribution of the antenna
source.

* By kopi = 1, the injected energy has fallen by two orders of magnitude.

* The kinetic range is effectively free of source effects.

Antenna source spectrum
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NL energy source
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Locality of energy transfer



Local versus non-local energy transter

Large scale shearing Small scale diffusion
Local transfer
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In neutral fluid turbulence, these can be transformed
away via random Galilean transformations. In a plasma,
Alfvén waves counter-propagating along a large scale B
field adds a preferred direction, breaking the symmetry

and increasing the importance of non-local energy
transfer.



Nonlocal energy transfer
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a) The perpendicular magnetic energy from
the weakened cascade model with i = 1
and Ti /Te = 16. In the lower three panels

are plotted the non-local contribution to the

nonlinear frequency at wavenumbers in the
inertial, KAW, and weak dissipating KAW
turbulence regimes respectively. From
Howes et al (2011).

(Top) Bi = 1 normalized cascade rate
(black), cumulative ion (red) and electron
(blue) heating rates. (Bottom) The ion
(red), electron (blue), and total (black)
damping rates at each scale.



Transfer function diagnostics

Non-linear transfer function from modes p and q to k:

oj
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J

Tkpq — /WBQCZUHd,u

* Instead of transfers in terms of k, p, q,
condense data into shells K, P, Q

* Shell setup: kn = ko x 23, where n = 25 and
Kopi = 0.275

* kopi = 0.275 chosen to place all driven
modes in lowest shell and still resolve kopi <
1




Net transfer of energy for electrons

* Examine the net non-linear transfer of energy by summing over all Q mediator shells

* Net energy transfer is local beyond shell 5, kpi >~ 1

Nonlinear transfer function (total)

From shell number
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Local versus non-local energy transter

Large scale shearing Small scale diffusion
Local transfer
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In neutral fluid turbulence, these can be transformed
away via random Galilean transformations. In a plasma,
Alfvén waves counter-propagating along a large scale B
field adds a preferred direction, breaking the symmetry

and increasing the importance of non-local energy
transfer.



Results at MHD scales

Use Kraichnan (1959) locality functions

ko = 3 [iié S

* Fix a shell, ke and vary a probe shell kp

* Consider all transfers for which one leg (p,q)
IS smaller than kp

e Start with kp, = ke and move k; further away,
retaining increasingly non-local contributions

* Neutral fluids find a locality exponent, y ~
4/3, that is universal in the inertial range

* Incompressible MHD simulations find y ~
2/3 for the total flux
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simulations. From Teaca et al (2011).



Mediators of kinetic scale turbulence

e Mediators are more non-local than neutral fluid o

r MHD turbulence

* Non-locality increases at small scales, implying non-self-similar behavior

* Behavior at large scale closer to neutral fluid
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Evolution of the distribution function and E
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FI1GURE 10. For Case I, (a) the total perturbed electron distribution function é f (0, v, t)
(colormap) and (b) electric field E(0,t) measured at x = 0 as a function of normalized time
Wpel.



Transform to g

We transform to the complementary perturbed distribution:
(Schekochihin et al 2009 ApJS, §5.1)

<Fos v, - A
gS(R&vJ_JUH) — hS(RS,UJ_,U”) T qT ° <¢ — = _L>
Os C R,

gs describes perturbations to the Maxwellian velocity
distribution in the frame moving with an Alfvén wave.
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